Solution 7

Supplementary Problems

1. Let f be a function on [a, b]. Verify that the parametric curve $x \mapsto x\mathbf{i} + f(x)\mathbf{j}$ is regular provided f is continuously differentiable on (a, b).

Solution. Let the curve be $\mathbf{c}(x) = x\mathbf{i} + f(x)\mathbf{j}$. We have $\mathbf{c}'(t) = \mathbf{i} + f'(x)\mathbf{j}$ and

$$|\mathbf{c}'(t)| = \sqrt{1 + (f'(x))^2} > 0$$
,

hence \mathbf{c} is regular.

2. Let **c** be a regular parametric curve on [a, b]. Find a parametric curve γ whose image is the same as **c** but reverse the orientation.

Solution. Define

$$\gamma(t) = \mathbf{c}(a+b-t) \quad t \in [a,b]$$

Then $\gamma(a) = \mathbf{c}(b)$ and $\gamma(b) = \mathbf{c}(a)$. Moreover, $\gamma'(t) = -\mathbf{c}'(a+b-t)$ so $|\gamma'(t)| = |\mathbf{c}'(a+b-t)| > 0$, γ is a regular parametric curve.